[1]方丹,胡卓玮,王志恒,等.基于GIS的北川县地震次生滑坡灾害空间预测[J].山地学报,2012,(02):230.
 FANG Dan,HU Zhuowei,WANG Zhiheng.Spatial Prediction of EarthquakeInduced Secondary Landslide Disaster in Beichuan County Based on GIS[J].Mountain Research,2012,(02):230.
点击复制

基于GIS的北川县地震次生滑坡灾害空间预测()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2012年02期
页码:
230
栏目:
山地学报
出版日期:
2012-01-01

文章信息/Info

Title:
Spatial Prediction of EarthquakeInduced Secondary Landslide Disaster in Beichuan County Based on GIS
作者:
方丹;胡卓玮;王志恒;
1.首都师范大学资源环境与旅游学院,北京 100048;
2.资源环境与GIS北京市重点实验室,北京 100048;
3.灾害评估与风险防范民政部重点实验室,北京 100048
Author(s):
FANG Dan HU Zhuowei WANG Zhiheng
1. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China;
2. Kay Lab. of Resources Environment and GIS, Beijing 100048, China;
3. Key Laboratory of Integrated Disaster Assessment and Risk Governance of the Ministry of Civil Affairs, Beijing 100048, China
关键词:
北川地震滑坡GIS空间预测
Keywords:
landslideBeichuanearthquakeGISspatial prediction
分类号:
P642.22
文献标志码:
A
摘要:
自然灾害的预测预报被认为是主动减灾防灾研究中较为经济有效的方式,其中,滑坡空间预测是滑坡灾害研究的基础工作。以汶川地震重灾区北川县为研究区,选取坡度、高程、岩石类型、地震烈度、水系、道路等6个重要滑坡影响因素作为评价因子,全面分析了地震滑坡分布与各影响因子之间的统计相关性,分别采用多元回归模型与神经网络模型计算滑坡灾害敏感性指数,并进行分级和制图。结果表明,极高和高敏感区主要分布在曲山、陈家坝等乡镇,主要沿着龙门山断裂带周边地区的河流和道路呈带状分布。其中,回归模型的预测精度为73.7%,神经网络模型的预测精度为81.28%,在本区域内,神经网络模型在滑坡灾害空间预测方面更具优势。
Abstract:
In earthquakestricken area, with the occurrence of aftershocks, heavy rainfall, and human activity, the earthquakeinduced secondary landslide disaster will threaten people’s life and property in a very long period. So, it makes secondary landslide became a research hotspots that draw much attention. The forecasting of natural disaster is considered as a most effective way to prevention or mitigation disaster, and the spatial prediction is the base work of landslide disaster research. The aim of this study is to analyze the landslide prediction,taking the case of Beichuan County. Six factors affecting landslide occurrence have been taken into account,including elevation,slope,litho logy,seismic intensity,distance to roads and rivers. The correlations of landslide distribution with these factors is calculated,the multiple regression and neural network model are applied to landslide spatial prediction and mapping. The model calculates result is ultimately categorized into four classes. It shows that the high and very high susceptibility areas most distribute in Qushan,Chenjiaba towns,etc,along the rivers and the roads around the area of Longmenshan fault. The precision accuracy using multiple regression model is about 73.7%,and the neural network model can be up to 81.28%.It can be concluded that in this study area,the neural network model appears to be more accurate in landslide spatial prediction.

相似文献/References:

[1]罗 辑,陈飞虎,赵永涛,等.汶川8.0级地震后岷山山脉大熊猫栖息地自然遗产保护战略[J].山地学报,2014,(03):365.
 LUO Ji,CHEN Feihu,ZHAO Yongtao,et al.The Conservation Strategy for Natural Heritage of Giant Panda Habitat in Minshan Mountains after Wenchuan 8.0 Earthquake[J].Mountain Research,2014,(02):365.
[2]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(02):356.
[3]李乾坤,徐则民,张家明,等.永胜金沙江寨子村古滑坡和古堰塞湖的发现[J].山地学报,2011,(06):729.
 LI Qiankun,XU Zemin,Zhang Jiaming.The Ancient Iandslide and Dammed Lake Found in the Jinsha River near Zhaizicun, Yongsheng, Yunnan, China[J].Mountain Research,2011,(02):729.
[4]余斌,马煜,张健楠,等.汶川地震后四川省都江堰市龙池镇群发泥石流灾害[J].山地学报,2011,(06):738.
 YU Bin,Ma Yu,ZHANG Jiannan,et al.The Group Debris Flow Hazards after the Wenchuan Earthquake in Longchi, Dujiangyan, Sichuan Province[J].Mountain Research,2011,(02):738.
[5]张斌,符文熹,聂德新,等.影响深埋长隧道岩爆的主要因素分析[J].山地学报,2000,(S1):94.
[6]贺奋琴,何政伟,陈礼富,等.四川北川县旅游资源及开发利用[J].山地学报,2002,(S1):143.
[7]陈智梁,刘宇平,孙志明,等.南水北调西线一期工程区地壳活动有关问题[J].山地学报,2005,(06):641.
[8]李昭淑,崔鹏.1556年华县大地震的次生灾害[J].山地学报,2007,(04):425.
[9]刘惠军,沈军辉,聂德新,等.5·12汶川地震青川县木鱼镇滑坡坝稳定性分析[J].山地学报,2008,(03):263.
[10]陈宁生,第宝锋,李战鲁,等.5·12汶川地震龙门山风景区地震次生山地灾害特征与处理[J].山地学报,2008,(03):272.

备注/Memo

备注/Memo:
收稿日期(Received date):2011-10-31;改回日期(Accepted):2011-12-28。
基金项目(Foundation item):国家科技支撑课题《综合信息协同分析与天地一体化数据集成示范》(2008BAK49B07-2)。 \[Supported by National Science & Technology Pillar Program(2008BAK49B07-2). \]
作者简介(Biography):方丹(1986–),女,侗族,贵州铜仁人,硕士研究生,主要从事遥感与GIS在灾害方面的应用。\[Fang Dan (1986 - ), born in Tongren, Guizhou, Dong,postgraduate, undertaking research on applications of GIS and RS in disaster science.\] E-mail:fangdan_2011@hotmail.com
更新日期/Last Update: 1900-01-01